PHARMAQ Analytiq

The do's and don'ts of real time RT-PCR as a tool in fish diagnostics

Evaluating important parameters pitfalls and result bias

PHARMAQ Analytiq Liv Sandlund, PhD ISAAH 2018

Real time RT-PCR TaqMan assay principle

Use of real time RT-PCR in preventive fish health

Key to successful real time RT-PCR

Sensitivity and specificity

Tissue sampling and RNA extraction

Choosing the right tissue and optimal extraction method for highest yield of RNA

→PMCV

- RNA virus
- Detect both viral genome and viral transcripts
- Heart tissue standard, but also ovarian fluid, milt, kidney, spleen and gills can be used

PHARMAQ

Analytig

RNA Bibonucleic acid

Assay design: Choose your target wisely

High sensitivity

- Ribosomal (16 S)
- Housekeeping genes
 - Capsid genes
 - Surface proteins
 - Polymerases
 - ITS-regions

High specificity

- ITS-regions
- Capsid genes
- Surface proteins
 - Polymerase
- Housekeeping genes
 - Ribosomal (16 S)

Assay design:

Specific primers - and probes

Optimize sensitivity and specificity

→ Do you have the right controls? Positive, negative, blank

PHARMAQ

Analytig

What affects sensitivity and specificity?

Size matters

- Primers- and probes
- Target area

Optimizing reaction kinetics

What is Cut-off, and why do we use it?

Analytical sensitivity

 How much of the target can we detect without the presence of biological material

Diagnostic sensitivity

How much of the target can we detect in the presence of biological material (RNA from fish)

Cut-off and PMCV

What is Cut-off, and why do we use it?

Calculating limit of detection and Cut-off

				Analytical sensitivity Dilution: water		Diagnostic sensitivity Dilution: matrix	
	Dilution	Nr. copies pr. ul	Nr. copies reaction	Nr. positive	Ct-value (avg, n=10)	Nr. Positive	Ct-value (avg, n=10)
Start	1,00E-09	684,59					
1	2,00E-10	137,12	342,79	10	32,51	10	32,43
2	1,00E-10	68,56	171,40	10	33,57	10	33,30
3	5,00E-11	34,28	85,70	10	34,59	10	35,21
4	2,50E-11	17,14	42,85	9	35,76	8	35,31
5	1,25E-11	8,57	21,42	7	35,59	6	36,11
6	6,25E-12	4,28	10,71	7	35,46	5	36,12

What is Cut-off, and why do we use it?

Limit of detection (LOD)

 The lowest theoretical amount of template it is possible to detect

Cut- off

 The lowest amount of template it is possible to detect and reproduce

→Values above Cut-off does not necessarily mean that samples are negative

Take home message:

 Real time RT-PCR: only pathogen detection

 Real time RT-PCR + Histology = Diagnosis

• Different labs = different methodology

Thank you for your attention!

- What affects realtime PCR?
 - Ekstraction method- RNA difficult
 - Make specific assays
 - Conserved to agent of interest
 - Size of primers and probe and the sequence area of detection?
- Difference between detection and diagnostics
- PCR is just detection
- Need tissue changes to determine/set a diagnosis

How do you document that a fish individual/group is negative?